
Google Summer of Code 2019

Block header parsing tool

Arpit Gupta

April 9, 2019

1 Introduction

GNU Radio consists of a vast library of blocks, both in-tree and out-of-tree. Presently,
it is hard to use these blocks in a context other than GNU Radio itself or as an inter-
face with blocks automatically or programmatically. So, there is a need for a python
based tool that can interact with block headers written in C++, to automatically
parse them and extract information about them such as which getters/setters they
have, their I/O signatures, factory signatures etc.

It would be great to come up with a tool that could be useful for GNU Radio
itself since we could parse block headers and convert the information into other
formats. For example, a tool that automatically creates GRC bindings from block
headers. An abstract representation of the block can be created by analyzing the
header code, which would be in the form of a tree, thus making the code readable
in a hierarchical fashion. Then, the abstract representation could be easily parsed
for any further use.
GRModtool currently provides us with a powerful CLI to work with and so could be
easily used for our purpose because of parsing tool itself being a CLI. GRModtool
can be extended with the parsing tool as one of its utilities.

The best python based parsers currently available that are used to parse C++
code are libclang (with python bindings) and pygccxml, so they will be used to
parse GNU Radio block header files.

1.1 Primary features of the project

1. Implementation of both the parsers (libclang with python and pygccxml).

2. Abstract the implementation details of parsers and create an abstract repre-
sentation of the header files.

3. Extend GRModtool CLI to provide support for the block header parser. Make
GRModtool use this code itself instead of the built-in code, write a python
script to generate documentation of header files using Doxygen and integrate
it in GRModtool.

1



4. Parse the abstract representation, create YAML files for GRC, write a script
to add or modify new optional YAML key parameters.

5. Extend the utility of block header parsing tool to take a list of files or a
directory and parse them and also extend it to parse different file types for
example .cc files etc (if time permits).

2 Proposed Workflow

Initially, I will be doing the groundwork by setting up the abstract implementation of
the parser (pygccxml). Then comes parsing the abstract representation and storing
information in a python dictionary. Next step will comprise of creating YAML files
for the GRC and integrating the tool with GRModtool. The same procedure will be
followed for libclang.

The working prototype of the entire project (using pygccxml parser only) is available
here[1]. The file ast_generator.py[2] implements the pygccxml parser to gen-
erate the abstract representation and the file text_parser.py[3] parses the entire
AST to get all the useful information. All the data that we get using the function
in the latter file is then returned in a python dictionary and a YAML file is created
in yaml_generator.py[4] file. pygccxml_ast.txt[5] is the AST generated for
sample.h[6] header file.

2.1 Implementation of parsing tools

GNU Radio API (headers) requires C++ for compiling, not straight C, so we need
a parser that does a good job in analysing C++ code. Libclang (python-based) and
pygccxml both do an excellent work for this purpose and are especially good for
GNU Radio header files because of their brilliant and elegant yet simple and most
importantly their generic structure.
But there is a trade-off in their utility. Here are a few points of comparison in both
the parsers:-

• Pygccxml takes a lot of computation time whereas libclang algorithms are
better in this case.

• Pygccxml is a quite mature python package and also has proper documenta-
tion which gives it an advantage over libclang which has a very small docu-
mentation.

• Pygccxml generates a nice indented AST which is really understandable and
easy to work with while this is not the case in libclang. Complex python
functions are required to be implemented to get all the required information
while parsing C++ code. (Section 2.4.2)

• But still libclang is a very popular C++ parser due to its well-written source
code and is under continuous development which provides an excellent oppor-
tunity to explore it.

So, it is worth it to use both of the python packages to parse the header files (with a
choice given to the user to use any one of them). Both the parsers can be abstractly
implemented and either one of them could be used.

2

https://github.com/aru31/parser-prototype
https://github.com/aru31/parser-prototype/blob/master/ast_generator.py
https://github.com/aru31/parser-prototype/blob/master/text_parser.py
https://github.com/aru31/parser-prototype/blob/master/yaml_generator.py
https://github.com/aru31/parser-prototype/blob/master/pygccxml_ast.txt
https://github.com/aru31/parser-prototype/blob/master/sample.h


2.1.1 Implementation of pygccxml

Pygccxml provides a simple framework to navigate C++ declarations, using Python
classes. It just needs to get access to the namespace in the file that we require
to parse. It automatically works its way down the hierarchy of the code structure
parsing all the variables, function calls and so on. It is compatible with Python 2.7,
3.4, 3.5, pypy and pypy3.

Implementation of pygccxml is as shown below used for parsing a header file from
a gr-directory:

1 from pygccxml import utils
2 from pygccxml import declarations
3 from pygccxml import parser
4

5

6 def pygccxml_parser(filename, gr_directory):
7 """
8 Implementation of pygccxml parser
9 """

10 generator_path, generator_name = utils.find_xml_generator()
11

12 # Configure the xml generator
13 xml_generator_config = parser.xml_generator_configuration_t(
14 xml_generator_path=generator_path,
15 xml_generator=generator_name)
16

17 # Parse the c++ file
18 decls = parser.parse([filename], xml_generator_config)
19

20 # Get access to the 'analog' namespace in 'gr'
21 global_namespace = declarations.get_global_namespace(decls)
22 ns = global_namespace.namespace("gr")
23 gr_block_type = gr_directory.split("-")[1]
24 gr_namespace = ns.namespace(gr_block_type)
25 return declarations.print_declarations(gr_namespace)

2.1.2 Implementation of Libclang with python

Libclang is a python package used for analyzing C/C++/ObjC code at the compiler
level which means it can also be used to analyze all the standard C++ libraries too.
Libclang with python bindings provide us a pythonic way of implementing classes
and functions to parse C++ files. It is also compatible with Python2.7, 3.4, 3.5,
pypy and pypy3.

Implementation of libclang in python is as shown below for used for parsing a
header file from a gr-directory:

1 import sys
2 from clang.cindex import Index
3 from pprint import pprint
4

5

3



6 def get_cursor_id(cursor, cursor_list=[]):
7 """
8 Cursor point to the current node
9 """

10 if cursor is None:
11 return None
12

13 for i, c in enumerate(cursor_list):
14 if cursor == c:
15 return i
16 cursor_list.append(cursor)
17 return len(cursor_list) - 1
18

19 def get_info(node, depth=0):
20 """
21 Recursively get info of all the nodes
22 """
23 children = [get_info(c, depth+1)
24 for c in node.get_children()]
25 return {'id': get_cursor_id(node),
26 'kind': node.kind,
27 'usr': node.get_usr(),
28 'spelling': node.spelling,
29 'location': node.location,
30 'extent.start': node.extent.start,
31 'extent.end': node.extent.end,
32 'is_definition': node.is_definition(),
33 'definition id': get_cursor_id(node.get_definition()),
34 'children': children}
35

36

37 index = Index.create()
38 tu = index.parse(sys.argv[1], args=['-x', 'c++'])
39 pprint(('nodes', get_info(tu.cursor)))

But libclang has a drawback that definitely needs to be worked on.
Libclang parses C++ header files along with all the standard headers that are
included in the code which generates a very long AST. This makes the AST very
difficult to parse, besides it provides us with redundant information of standard
libraries. So, the way I figured out is to create a list of standard C++ header files,
write a python function to exclude them from being parsed.

2.2 Abstract implementation of parsers

It is due to the weird syntax of C++, all the current C++ parsers are still under
constant development, thus need for their abstract implementation. Also, the trade-
off in the utility of both the parsers mentioned in section 2.1 makes it necessary to
do so. Abstracting the details of implementation of both the parsers will allow us
to work on both of them easily without complicating the code, and we can even
replace them with some other parser if need be.

Abstract implementation of both the parsers from CLI is as shown below:

4



1 def AbstractASTGenerator(parser):
2 """
3 Abstract parser implementation
4 """
5 try:
6 if parser.lower() == 'clang':
7 ClangASTGenerator()
8 elif parser.lower() == 'pygccxml':
9 PygccxmlASTGenerator()

10 # Can be easily extended further if required
11 except Exception as e:
12 pass
13

14 def InitailParserInput():
15 """
16 Parser Type Input
17 """
18 parser_list = [
19 'clang',
20 'pygccxml',
21 ]
22 parser = input('Parser type(' + '/'.join(parser_list) + '): ')
23 if parser.lower() in parser_list:
24 ast = input('Do you require an AST file? (y/n): ')
25 if ast.lower() == 'y':
26 AbstractASTGenerator(parser.lower())
27 # Similarly other functions can be implemented
28 else:
29 raise Exception('Please specify a valid parser name!')

As shown above, other functionalities can be abstracted in such a way such that
any other parser after being implemented can be easily called to use its functionality
such as to generate AST, get make function, I/O signatures.
After the abstract implementation, we get Abstract Syntax Tree (AST) for the
header code to work with. AST provides us with the whole complete tree structure
of the header file to be parsed.

Example AST generated by both the parsers for a GNU Radio header file
(agc2_cc_impl.h) are:

• Clang-generated-AST [7]

• Pygccxml-generated-AST [8]

2.3 Extend GRModtool CLI to provide support for this tool

GRModtool is a script in GNU Radio that provides a CLI for creating OOT mod-
ules. It provides various features, for example creating new OOT modules, editing
makefiles, using templates, generating YAML files and much more.
Block header parsing tool also being a command line utility can easily be integrated
with GRModtool.
Another GRModtool command can be called from CLI, for example gr_modtool
parse for this purpose.

5

https://github.com/aru31/GSoC-Proposal/blob/master/AST/clang-ast.txt
https://github.com/aru31/GSoC-Proposal/blob/master/AST/pygccxml-ast.txt


I have already gone through the code of GRModtool, which is brilliantly written and
it will be really easy to work with.

• CLI will be implemented in the /cli module of GRModtool, extending the
use of click and click plugins.

• Implementation of the backend code of both the parsers will be implemented
in the /core modules of GRModtool.

GRModtool already consists a parser written in parser_cc_block.py file to parse
C++ files. It is although written elegantly but the code is limited only to parse GNU
Radio cc files and if thought to be extended further as a generic API, it cannot be
done because of the code structure which is written by analyzing the code pattern
limited to GNU Radio headers, whereas for generic parsing (parsing every C++ file
in a similar way), so that tool can be used as an API external to GNU Radio, both
the python packages (pygccxml and libclang) do a great job.

Manual syntax check (snippet from parser_cc_block.py) is no longer required as
earlier done while parsing C++ files because both parsers throw compiler exceptions
in case of syntax error (if any). Code shown below is no longer required.

1 while not end_of_list:
2 # Keep track of (), stop when reaching final closing parens
3 if not in_string:
4 if c[i] == ')':
5 if parens_count == 0:
6 if read_state == 'type' and len(this_type):
7 raise ValueError(
8 'Found closing parentheses before finishing '
9 'last argument (this is how far I got: {})'.format

\
10 (str(param_list))
11 )

Generating documantation for the header code is also quite necessary. So, Doxygen
will be used for this purpose. Doxygen being a command line utility can easily used
through a python script and then integrated in GRModtool. Another GRModtool
command can be called from the CLI, gr_modtool document for this purpose.

2.4 Parse the abstract representation, Create YAML files for GRC

After generating the AST (abstract representation of the block header), it needs
to be parsed to get all the useful information from it. Because of the use of
two different parsers in this project, they generate AST in a different format, thus
different parsing strategies need to be implemented for both of them.

2.4.1 Parsing pygccxml generated AST

Pygccxml generates AST (.txt file mentioned in section 2.2) in the form of tree data
structure because of the implementation of the helper-print function in it to print
all the declarations. The best way to parse the AST generated by pygccxml is to
parse through the top-level hierarchy of the header file and then reach the bottom
level that is parsing different defined functions and function declarations.

6



The architecture of pygccxml generated AST parser is as shown below:

• Parse through all the namespaces that are defined in the header file.

• Parse through the classes defined in the namespace used.

• Parse through the getters/setters defined in a class (public/protected/pri-
vate).

• Parse through the make function defined in the public constructor of the class.

• Finally parse through different variables and functions defined in constructors
(defined as parameters in YAML files).

Starting through the top-level, example parser implementation for the pygccxml
generated AST is as shown below, not complete parser though, but a part of it, the
complete parser will be implemented as part of my project:

1 def namespace_parsing(filename, gr_directory):
2 """
3 Function to parse the namespace defined in the file
4 """
5 with open(filename, 'r') as file_object:
6 lines = file_object.readlines()
7 namespace_name = []
8 namespace_index = []
9 gr_block_type = gr_directory.split("-")[1]

10 for line in lines:
11 if 'namespace_t' in line:
12 namespace_name.append(line.split(":

")[1].strip().replace("'", ""))
13 namespace_index.append(lines.index(line))
14 if namespace_name[0] == gr_block_type:
15 lines = lines[0: namespace_index[1]]
16 elif namespace_name[1] == gr_block_type:
17 lines = lines[namespace_index[1]: len(lines)]
18 else:
19 raise Exception('Wrongly specified namespace, must be

{}'.format(gr_block_type))

Similarly, the rest of the parsing API will be defined according to the given archi-
tecture during my GSoC coding period.

2.4.2 Parsing libclang generated AST

Libclang (with python bindings) generates AST (.txt file mentioned in section 2.2)
as a JSON which is really easy file format to work with. The architecture of libclang
generated AST parser is as shown below:

• To parse the methods defined, we need to get all the child nodes with key-
value pairs defined as ‘’kind’: CursorKind.CXX_METHOD‘ from the JSON.

• To parse the parameters defined, we need to get all the child nodes with key-
value pairs defined as ‘’kind’: CursorKind.PARM_DECL‘, from the JSON.

7



This allows us to get all the possible variables, function declarations, and parameters
defined in the header file, but we need their data types, return types too.

1 def traverse(node):
2 """
3 function that helps cursor traverse through all the nodes
4 """
5 for child in node.get_children():
6 traverse(child)
7 print('Found {} [line={}, col={}]'.format(node.displayname,

node.location.line, node.location.column))

The output of this function will provide us with data types of all the variables and
return types of different function declarations defined in the block header, which
could be then used along with the parser architecture to get information of all the
possible nodes of the AST.

2.4.3 Raising proper exceptions while parsing

Raising proper exceptions is also necessary because the header file should be defined
according to GNU Radio header API standard and then only it should be allowed
to generate YAML files. Few of these are:

• A public destructor must be defined along with a public constructor for main
block header files so that it is called automatically when the object goes out
of scope.

• A ‘work()‘ function must be declared with return type ‘int‘ with arguments
‘gr_vector_const_void_star &input_items‘, ‘gr_vector_void_star &out-
put_items‘ and ‘noutput_items‘.

2.4.4 Creating YAML files for GRC

Once the data is parsed, store it in a python dict, create YAML files as per the
layout of standard YAML files in GNU Radio.
GRModtool already consists of a YAML_generator used for the purpose of gener-
ating YAML files for the GRC. It has been implemented using Ordered Dictionary in
python which is brilliant because key order definitely matters for YAML files. The
code from YAML_generator in GRModtool can be extended reused and extended
for this purpose. Other advantage is that this would allow us to create generic
YAML structure for the GRC.
YAML file architecture in GNU Radio consists of these following keys:

• id, label, category, flags, parameters, inputs, outputs, templates, file_format.

• cpp_templates (only if flag includes cpp), documentation (optional).

Values of the keys namely id, label, flags (will be a CLI input) and file_format are
implemented as shown below:

1 def file_name_parsing(file_name):
2 """
3 Function for generating YAML architecture
4 """

8



5 label_dict = {
6 'c': '(Complex)',
7 }
8 label_part = (file_name.split("_"))
9 if len(label_part[-1]) < 2:

10 if label_part[-1] not in label_dict:
11 label_part.pop()
12 else:
13 label_part[-1] = label_dict[label_part[-1]]
14 data = {}
15 data['id'] = file_name.split(".")[0].lower()
16 data['label'] = (' '.join(label_part)).title()
17 data['flags'] = ['python'] # optional cpp templates
18 data['file_format'] = 1
19 return data

All the other key-values for YAML are the output of parsed data.

• templates key-value pair is determined by the make function of the block
header.

• I/O signature of the header file provides us the input, output key-value pair
of YAML file.

A script for adding optional key-value parameters must also be implemented, for
example, if the flag key has cpp parameter, cpp_templates key-value pair should
be generated.

2.5 Manage different data-file type (if time permits)

One of the features that would be really good to implement is to take a list of
files as an input, put them in a queue and parse them, reducing the effort to parse
headers one at a time.
Also, the utility of this tool could be extended to implement a parser for .cc files
in GNU Radio, just different text-parsing functions need to be implemented with
almost the same code, not a difficult job at all.

3 Timeline

I will utilize the period of community bonding to familiarize myself with the GNU
Radio community. I will also make sure to gain a deeper insight into the source
code. This will enable me to contribute more efficiently to the community. More-
over, I will figure out ways the header parsing tool in the most possible efficient way
by using efficient python libraries for my purpose, squashing all (if not most) the
bugs before completion. Additionally, I will define the minute details of the project
so that I face minimal difficulty in the coding period.

The necessary documentation will be done in parallel with the development. There
is a 13-week long coding period. I have my holidays in the months of May, June,
and July, so I’ll work full time during this period, i.e., around 35-40 hours a week
while in August I’ll work for around 30-35 hours a week. I have made my deliverables
accordingly on a weekly basis.

9



The expected timeline for my project is given below:

May 6 - May 27 Define the minute details of the project and build a sample parser
architecture.

May 27 - June 3 Initialize the implementation of pygccxml to generate AST, ab-
stract its implementation, define all the helper functions required.

June 3 - June 10 Start working on parsing pyggcxml generated AST.

June 10 - June 17 Complete the implementation on parsing AST generated by pygc-
cxml with thorough testing.

June 17 - June 24 Extend the script in GRModtool to generate YAML files for GRC or
if required write a new script for this purpose raising proper excep-
tions.

June 24 - July 1 Submit the code for Phase 1 evaluation and write a script to edit
the optional YAML keys, write a script to generate documentation
of the header code and use it as one of GRModtool commands.

July 1 - July 8 Integrate the new tool with GRModtool so that it could be used as
one of the utility of GRModtool.

July 8 - July 15 Complete the parsing tool that runs along with GRModtool as its
utility, initialize the implementation of libclang to generate AST.

July 15 - July 22 Start working on parsing liblclang generated AST.

July 22 - July 29 Submit the code for Phase 2 evaluation and complete the imple-
mentation on parsing AST generated by libclang with thorough
testing.

July 29 - Aug 5 Complete the remaining tasks for this parser (would be easy be-
cause most of the work is already completed earlier while fully im-
plementing pygccxml).

Aug 5 - Aug 12 Thoroughly test the block header parsing tool, buffer time for com-
pleting the remaining tasks and start working on the extended part
that is to take a file list as an input and parse them.

Aug 12 - Aug 19 Start working on extending this tool for .cc files.

Aug 19 - Aug 26 Complete the project and submit the final report.

Timeline of the project

10



4 Deliverables of GSoC 2019

The deliverables of the GSoC project are as follows:

• Implement abstract parsers compatible with python 3.

• Properly parsing the generated AST and creating YAML files from command
line itself for GRC.

• Extend Command Line Interface of GRModtool to support the new tool that
would abstract the use of parsers, also generate documentation for the header
files and then integrate it with GRModtool as one of its commands.

• Implement the complete tool with thorough testing.

4.1 Milestones

• Phase-1: Successfully parsing AST generated by pygccxml.

• Phase-2: Extend the support of GRModtool with the parsing tool and com-
plete the first parser with thorough testing, complete parsing AST with lib-
clang, generate documentation for header files using Doxygen.

• Final Evaluation: Completion of the block header parsing tool using both
parsers (pygccxml and libclang), successfully creating YAML files for the GRC,
making the tool functional as a generic API so that it would be easy to work
on this tool further, and could be used for other purposes.

4.2 Review/Merge Cycle

The code can be reviewed as per the proposed timeline whereas it can be merged
according to the timeline stated below:

• June 24: Merge code for parsing AST generated by pygccxml.

• July 22: Merge code for complete parsing tool (Using pygccxml), documen-
tation generator for header files, all integrated with GRModtool, and parsing
AST with libclang.

• August 19: Merge the entire block header parsing tool along with it’s extended
utilities (if possible).

4.3 Testing

The code will be thoroughly tested locally at almost every step of the whole ar-
chitecture, test scripts will also be written to ensure all the third-party packages
are correctly installed. The code will also be compatible with standard pylint rules.
Additional tests will be written to ensure that the block header files are parsed
correctly.

11



5 Acknowledgment

I have thoroughly gone through the GSoC StudentInfo page and GSoC Manifest
page. I hereby assure that I will abide by the rules and regulations. I also accept
the three strikes rule and the details mentioned.
I also assure that I will communicate with the assigned mentor regularly, maintain
thorough transparency and keep my work up to date.

6 License

The entire code during the coding period will be transparent, i.e., available on
GitHub. The code submitted will be GPLv3 licensed.

7 Personal Details and Experience

I am a second year undergraduate at Indian Institute of Technology Roorkee. My
areas of interest are software development, signal processing, and deep learning. I
am proficient in Python, C++, Java, JavaScript, and PHP. I am familiar with git
environment as I work regularly on GitHub. I haven’t contributed much to open
source till now, but I’ll really like to contribute to GNU Radio and make it as my
first remarkable experience. I will not get any extra credits for the GSoC project. I
am proficient in two human languages including English.
I have the experience of working closely with a team as I am an active member
of Information Management Group at IIT Roorkee, a bunch of passionate enthu-
siasts who manage the institute main website, internet and intranet activities of
the university and the placement portal. My major project as a part of the group
is Lectures and Tutorials Portal (Lectut), an intranet-based study portal, used by
unique 4k campus students and faculty every month with an aim of assisting them
to achieve their academic goals. The project has been implemented on Django,
Django-Rest (python based framework).

I am also a member of Vision and Language Group a student group aimed at
spreading culture for reading and programming deep learning research papers in the
campus.
Cyberspectrum is the best spectrum.

I started off with GNU Radio in January 2019. To get familiarized with the code, I
made the following contributions to the code base:

1. Pull request #2339: gr_modtool: remove unused code in rename.py

2. Pull request #2338: Update README.md to provide instructions for building
GR with support of python3.x

3. Pull request #2350: grc: fix for GRC’s block hotkeys

4. Pull request #2352: grc: parse prefix for numeric values

5. Pull request #2373: grc: Fix save as for existing grc file

6. Pull request #2330: Add C++ generation support to gr-digital

12

http://img.channeli.in/
https://www.iitr.ac.in/
https://github.com/gnuradio/gnuradio/pull/2339
https://github.com/gnuradio/gnuradio/pull/2338
https://github.com/gnuradio/gnuradio/pull/2350
https://github.com/gnuradio/gnuradio/pull/2352
https://github.com/gnuradio/gnuradio/pull/2373
https://github.com/gnuradio/gnuradio/pull/2330


7. Pull request #2343: Add C++ generation support to gr-filter

8. Pull request #2361: gr_modtool: Fix for parameter wrap in cli inputs

9. Pull request #2398: grc: Fix color for input boxes in parameter widget ac-
cording to dark-gtk themes

10. Pull request #2412: GRC: Fix for GRC crash in case of flowgraph error

11. Pull request #2418: gr_modtool: fix for .yml file make template

12. Pull request #2423: gr_modtool: fix for yaml generator

13. Pull request #2431: modtool: fix modtool tests for missing pylint dependency

I will always be available on email or Google Hangouts for any kind of discussion or
query.
I am highly interested to contribute to GNU Radio after the GSoC period. After
the period, I’ll mainly focus on extending the utility of this tool to different types
of files, with the tool deciding how to manage each data file type by its own. I’ll
always be available for fixing the bugs that come up in the block header file tool.

Here is the link to my CV.

7.1 Other Details
Address : Roorkee, Uttarakhand, India
Email : guptarpit1997@gmail.com
Github : https://github.com/aru31/
LinkedIn : https://www.linkedin.com/in/aru31/
Codechef : https://www.codechef.com/users/aru31121997

8 Conclusion

Block header parsing tool would be a great addition to the set of tools for GNU
Radio that works independently of the whole code. Since, block headers are the
most direct source of information of GNU Radio blocks, parsing them directly from
the source code itself would be of great utility.

9 Links

1. https://github.com/aru31/parser-prototype

2. https://github.com/aru31/parser-prototype/blob/master/ast_generator.py

3. https://github.com/aru31/parser-prototype/blob/master/text_parser.py

4. https://github.com/aru31/parser-prototype/blob/master/yaml_generator.py

5. https://github.com/aru31/parser-prototype/blob/master/pygccxml_ast.txt

6. https://github.com/aru31/parser-prototype/blob/master/sample.h

13

https://github.com/gnuradio/gnuradio/pull/2343
https://github.com/gnuradio/gnuradio/pull/2361
https://github.com/gnuradio/gnuradio/pull/2398
https://github.com/gnuradio/gnuradio/pull/2412
https://github.com/gnuradio/gnuradio/pull/2418
https://github.com/gnuradio/gnuradio/pull/2423
https://github.com/gnuradio/gnuradio/pull/2431
https://aru31.github.io/resume.pdf
mailto:guptarpit1997@gmail.com
https://github.com/aru31/
https://www.linkedin.com/in/aru31/
https://www.codechef.com/users/aru31121997
https://github.com/aru31/parser-prototype
https://github.com/aru31/parser-prototype/blob/master/ast_generator.py
https://github.com/aru31/parser-prototype/blob/master/text_parser.py
https://github.com/aru31/parser-prototype/blob/master/yaml_generator.py
https://github.com/aru31/parser-prototype/blob/master/pygccxml_ast.txt
https://github.com/aru31/parser-prototype/blob/master/sample.h


7. https://github.com/aru31/GSoC-Proposal/blob/master/AST/clang-ast.txt

8. https://github.com/aru31/GSoC-Proposal/blob/master/AST/pygccxml-ast.txt

14

https://github.com/aru31/GSoC-Proposal/blob/master/AST/clang-ast.txt
https://github.com/aru31/GSoC-Proposal/blob/master/AST/pygccxml-ast.txt

	Introduction
	Primary features of the project

	Proposed Workflow
	Implementation of parsing tools
	Implementation of pygccxml
	Implementation of Libclang with python

	Abstract implementation of parsers
	Extend GRModtool CLI to provide support for this tool
	Parse the abstract representation, Create YAML files for GRC
	Parsing pygccxml generated AST
	Parsing libclang generated AST
	Raising proper exceptions while parsing
	Creating YAML files for GRC

	Manage different data-file type (if time permits)

	Timeline
	Deliverables of GSoC 2019
	Milestones
	Review/Merge Cycle
	Testing

	Acknowledgment
	License
	Personal Details and Experience
	Other Details

	Conclusion
	Links

